
Subprocess
to FFI

Memory, Performance, and Why You Shouldn’t Shell Out!



Christine Spang



Inbox is a startup

in San Francisco
that I co-founded

funded by top VCs

building a new email platform.



We  ❤  Python



CPython 2.7 on Linux

EXTERNAL BINARY C LIBRARY
VS.



Why you shouldn’t 

$hell out!
And sometimes why you should...



iconv



iconvconvert-utf8



SUBPROCESS

( USUALLY PART OF LARGER SYSTEM. )



photo credit: http://flic.kr/p/hBMUP5 

http://flic.kr/p/hBMUP5


subprocess.check_call(
[‘iconv’, ‘-f’, encoding, ‘-t’, 
‘utf-8’, filename])

Let’s go source diving...



self.pid = os.fork()

>>> from inspect import getsourcefile
>>> import subprocess
>>> getsourcefile(subprocess)

‘/usr/lib/python2.7/subprocess.py’



photo credit: http://flic.kr/p/hBMUP5 

http://flic.kr/p/hBMUP5


the API between a userspace 
application (like convert-utf8) 
and the operating system’s kernel

a system call (syscall)



fork()





waitpid()

✓
convert-

utf8

execvp()

parent
process

fork()

child process
fork()

_exit()

$ iconv -f 
encoding -t utf-8 
filename

checks exit code and raises 
exception if child process failed

convert-utf8
subprocess.check_call()



creates the child process by making 
a copy of the parent process. 

The child process inherits the parent’s 
memory pages: the program data is 
shared between the two processes, and 
the data, heap, and stack are given to the 
child copy-on-write.

fork()



->   TWO PROCESSESfork()

USING MORE TOTAL MEMORY THAN THE 
ENTIRE SYSTEM HAS ALLOCATED

COPY - ON - WRITE



photo credit: http://flic.kr/p/7eypMU

http://flic.kr/p/7eypMU


OVERCOMMIT

When overcommit_memory flag is 0, the kernel 
attempts to estimate the amount of free memory 

left when userspace requests more memory.

— docs from Kernel.org



OVERCOMMIT

OOM Kill

SOMETIMES MORE COMPLICATED



simple and easy
flexible enough
throws native Python exceptions

why shell out?
using subprocess module

photo credit: http://flic.kr/p/6UTVj7

http://flic.kr/p/6UTVj7


the dangers...
of forking your process

significant overhead (fork, file I/O vs memory)
limited API
parsing stdout/stderr
flushing, buffering, deadlocks issues w/pipes



DO IT ANYWAY
( USUALLY )



Wrapping C libraries 
from Python

Another option:



a way to call functions and use data 
structures provided by one language in 
another language.

FFI: foreign function 

interface



The usual suspects



C extension write lots of C with Python’s C API 

The usual suspects



C extension write lots of C with Python’s C API 

The usual suspects

ctypes standard library (wraps libffi), no C 
compiler needed, but tedious and clunky



C extension write lots of C with Python’s C API 

The usual suspects

ctypes standard library (wraps libffi), no C 
compiler needed, but tedious and clunky

Cython Python/C hybrid language, more for 
optimizing speed than wrapping



C extension write lots of C with Python’s C API 

The usual suspects

ctypes standard library (wraps libffi), no C 
compiler needed, but tedious and clunky

Cython Python/C hybrid language, more for 
optimizing speed than wrapping

CFFI written to address ctypes shortcomings, 
ABI or API (needs compiler) interface 



Wrapping libiconv: C extension



Wrapping libiconv: CFFI



Write less C.

Python C extension: 252 lines of C

CFFI wrapper: 120 lines of Python/C
(~40 lines actually interface with C)

(you are not a superhuman)



What did we learn?



$HELLING OUT IS

EXPENSIVE
IN BOTH MEMORY AND COMPUTATION



TO MAKE IT FASTER &
HAVE MORE CONTROL...

WRAP YOUR LIBRARIES
WITH CFFI (usually)



KNOW YOUR OS

EVEN WHEN USING A HIGH-LEVEL LANGUAGE…



Say hi !

follow @spang
spang@inboxapp.com

all examples on GitHub

Like this? Come work at Inbox!  :)


